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ABSTRACT

Analyses of policies that improve water quality often suggest that the costs far exceed the benefits. Keiser
and Shapiro (2019a) suggests that this partially arises from the difficulty of accurately measuring the
benefits. Measuring these benefits is often complicated by the lack of data on visitations. In this paper, we
study the value of recreation amenities nationwide using data from mobile devices about aggregate visitor
counts and dwell time at each water recreation site by home census block group. We combine the mobile
movement data with data on water quality and weather to construct a comprehensive, novel, and detailed
dataset of around 32k water-based recreational sites with linkage to recreation visits made by 23 million
representative residents. Using these data, we construct aggregate share data of recreation visits from each
census block group to each site. We develop a random coefficient logit model of site choice to estimate the
welfare effects of water quality improvements in the US. Our results suggest recreators are willing to pay
an average of $2.55 for a 1-meter increase in Secchi depth in the sites they visited, ranging from $1.3 to $2.2
across census regions. Our work suggests that the benefits of improving the water quality of all sites to
the level of the cleanest site are $433.26 million. The annual welfare losses due to the most popular and
polluted site closure are $2.7 billion and $878.37 million, respectively. Revisiting the water quality changes
from 1972 to 2001, Our findings add 1.7% to the previously estimated benefits gained from the Clean Water
Act.
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1 INTRODUCTION

In 1995, the Charles River earned a D grade for water quality at its mouth in Boston Harbor, a result of
uncontrolled human sewage, industrial waste, and landfills that crept up right to the water’s edge. The
river was so polluted at the time that the locals joked about people needing tetanus shots if they fell in. The
Standells, an American rock band, wrote a song as a mock paean to the city of Boston, Massachusetts, and
its then-famously polluted Boston Harbor and Charles River:

"... Yeah, down by the river

Down by the banks of the river Charles

Aw, that’s what’s happenin’, baby

That’s where you’ll find me

Along with lovers, muggers, and thieves

Aw, but they’re cool, too

Well, I love that dirty water

Oh, Boston, you’re my home ..."

Due to the ambitious effort made by Environmental Protection Agency (EPA), numerous federal, state,
and local agencies as well as nonprofit groups, private institutions, and citizens the Charles River is now
both fishable and swimmable. However, reducing water pollution is still a major focus of policy makers.
Although the United States has spent approximately $5 trillion to clean up surface water pollution and
provide clean drinking water, over half of the US rivers and lakes violate environmental standards.

One puzzle arising from these large investments is that 67 percent of surface water regulations failed a
benefit-cost test (Keiser and Shapiro (2019b)). This raises a key question for policy makers as to whether
the failure of cost-benefit tests arises because of a downward bias from the true value of surface water
quality. As the United States continues putting efforts to clean up surface water pollution, it is critically
important to develop a more comprehensive understanding of water quality benefits and to justify the
investments. One potential source of a downward bias in benefits is the difficulty in accurately measuring
the recreational benefits of clean water. Improvements in water quality increase the utility of using such
recreational activities of swimming, boating, and fishing. However, these benefits may be more difficult to
quantify that the health benefits from, say, improvements in air quality for a variety of reasons.

In this paper, we ask what are the nationwide recreational benefits of surface water quality improvements?
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An accurate answer to this question has so far proven elusive for three related reasons. First, it has been
difficult to link individual recreation behavior to surface water quality for the entire nation over time.
Past research relies on self-report data using on-site surveys or off-site sampling, which often generate
localized estimates and often fail to transfer benefits to larger regions (Loomis et al. (1995); Rolfe et al.
(2015); Rosenberger and Loomis (2017)). Second, the survey data used for recreation demand studies
often suffer from selection biases and recall errors (Connelly and Brown (2011); Dillman (2017); Rylander
et al. (1995); Tarrant et al. (1993)). Third, the individual choice sets may be endogenous. Without knowing
the actual visits, it is difficult to identify what recreators consider to be the relevant substitutes, and simply
specifying the choices could produce significantly larger losses for policies that restrict site access (Parsons
et al. (2021); Parsons and Hauber (1998); Parsons et al. (2000)).2

To address these challenges, we begin by constructing comprehensive data on recreation visits, water
quality, and weather in the lower 48 states from 2018 to 2021. To overcome the difficulty of measuring which
sites households visit, as well as the set of potential sites they could visit, we collect from Safegraph which
tracks location data from mobile devices. These data measure where a mobile-devise user lives and which
water sites they visit. The data allow us to measure each water-based recreation site visit by home census
block group (CBG) making it possible to observe the actual linkages between recreation behavior and
surface water quality nationwide. We then develop a structural model of site choices to estimate recreation
demand for these water-based recreation sites and how this demand is affected by changes in water quality.
We include site fixed effects to account for time-invariant differences in the utility of each site and CBG fixed
effects to capture unobserved demographic variables that influence the demand for outdoor recreation. In
addition, we employ a set of instruments to address the potential omitted variables bias and endogeneity
issues. Given our utility parameter estimates, we can measure the welfare impacts of both non-marginal
changes in water quality and site closures.

Our data on water quality suggest that despite the large investments in improving water quality, average
water quality across all of our recreation sites changed little from 2018. One measure of water quality
frequently used is the Secchi depth. The Secchi depth is the depth at which point a Secchi disk, an 8-inch
black and white disk, is no longer visible by the naked eye. In our data, the within-site change in annual
average Secchi depth from 2018 to 2021 varies from -2.87 meters to 5.15 meters. We also observe large
variations in the annual changes in the Secchi depth within a given site. Our empirical strategy will leverage
these within-site changes in water quality.

2In the following sections, we use recreation visitors and recreators interchangeably.
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Our analysis proceeds in three steps. In the first step, we introduce the data that we assemble for this
research and the empirical context. The major data for recreation visits is obtained from the Safegraph cell
phone database. Wematch the recreation site polygons with water bodies and flow line layers fromNational
Hydrography Data (NDH) to identify water-based recreation sites3. We then match our recreation data
to water-quality data from EPA’s Water Quality Portal and annual weather data from the PRISM Climate
Group. This source provides data on over 23 million households’ recreational decisions and residential
locations at the CBG level. We focus on the recreation patterns between 2018 and 2021, for which we
observe the number of visitors traveling from their home CBG to water-based recreation sites4. During this
period, people from 216k CBGs visited about 32k water-based recreation sites, where the average number
of visits per year is 6,312 and the average number of visitors per year is 2,829.

With these rich data on visitations and water quality, we construct aggregate data on actual site choices for
each CBG from 2018 to 2021 and the costs associated with visiting each site from a home CBG. We calculate
the travel costs by summing up the out-of-pocket travel costs and the value of travel time for the trip to
and from the site. We calculate the travel distance and travel time for each route through the Open Source
Routing Machine. We calculate out-of-pocket expenses using state-monthly average gasoline cost data
obtained from AAA website5. For the value of time, we use the average implied hourly wage of each CBG.

We focus on car-mode trips. We define car-mode trip as any trips traveled within a 300-mile distance based
on our travel distance distribution6. To determine the market share of recreation trips for each site from a
CBG, we define the total market size of water-based recreation by multiplying the average annual number
of the device at a CBG by the number of holidays and weekends over a year (115 days). Finally, we match
the data with annual precipitation and average temperature from the PRISM Climate Group to control for
the impact of weather conditions on recreation trips.

In the second step, we develop a structural model of site choices across time and space to estimate the
recreation demand function. Specifically, we cast the water-quality measures as lake characteristics in the
static, discrete-choice framework of Berry et al. (1995). We calculate the “market” share of each recreation
site within 300 miles from people living in each CBG, specifying the utility of visiting each site to be a

3We define “water-based recreation” broadly to include all recreation sites that provide water-related services to humans, such
as boating, swimming, or fishing.

4The duration of the visit must last at least 4 minutes to count as a visit to a given POI.
5We assume the MPG of the average passenger vehicle is 23.3 miles per gallon. The fuel costs per mile for an average passenger

vehicle are calculated by multiplying the average gas costs by the MPG for an average vehicle.
6Consistent with what we find, the 2017 National Household Travel Survey shows a similar cutoff for car-mode trips. See more

details in Online Appendix A.3.
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function of both water quality the travel costs associated with visiting a given site, and annual weather
conditions. Given the richness of our data, we can control for the time-invariant quality of each site by
including site fixed effects. As a result, our model relies on temporal variation of water quality measures to
explore the impact of water quality on recreation demand. To account for potential endogeneity concerns
with respect to travel costs arising through time series changes in gasoline prices, we collect the annual
crude oil prices from 2018 to 2021 from US Energy Information Administration (EIA), as the oil prices
are plausibly exogenous cost shifters to recreators. We use the interaction between oil price and state
dummies, and travel distance as instruments of travel costs. Moreover, we conduct a battery of additional
robustness checks that demonstrate that our results are robust to alternative site polygon buffers, market
sizes, car-mode trip cutoffs, travel cost definitions, and functional forms.

In the third step, we use our estimated utility parameters to quantify the welfare effects under three water
quality scenarios. First, we assess the recreation welfare benefits from water quality improvements by
simulating the compensating variation for all the recreation sites experiencing improvements in water
quality to the level of the cleanest lake observed in the data. Next, the eutrophication of water bodies has
been considered one of the most significant environmental concerns in water-based recreation. It harms
human health, contributing to the spread of gastrointestinal and dermatological diseases. We calculate
the welfare changes under a site closure scenario that are most likely to be considered by local authorities:
closing the recreation sites with eutrophication. Lastly, in response to the COVID-19 pandemic, many
popular recreation sites have been temporarily closed. Therefore, we consider closing the most popular
recreation destinations as a counterfactual to understand the welfare effects of this policy.

Our results suggest that water quality is likely a strong driver of recreation behavior and welfare changes
over our study period. Recreators are willing to pay an average of $2.55 for a 1-meter increase in Secchi
depth in the sites they visited. Furthermore, we find some evidence of spatial heterogeneity in water
quality preference such that the MWTP for Secchi depth varies from $1.3 to $2.2 across census regions. The
three water quality scenarios we discuss above lead to a significant willingness to pay for water quality
improvements and for avoiding site closure. We find the benefits from improving the water quality of all
sites to the level of the cleanest site is $433.26 million, with spatial heterogeneity across census regions
ranging from $50.7 million to $ 100.4 million. Additionally, the welfare losses due to the most popular and
polluted site closure are $2.7 billion and $878.37 million, respectively. Revisiting the water quality changes
from 1972 to 2001, Our findings add 1.7% to the previously estimated benefits gained from the Clean Water
Act.
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Our work complements a broad literature that examines the impact of water quality on recreation demand.
Most recreation demand studies use surveys with revealed preference and stated preference methods to
estimate benefits from water quality improvements, however, these studies are often geographically and
temporally limited (Egan et al. (2009); Fenichel et al. (2013); Hushak et al. (1988); Hynes et al. (2013);
Keiser and Shapiro (2019b); Kelch et al. (2006); Lupi et al. (2003); Melstrom and Lupi (2013); Phaneuf and
Smith (2005); Provencher and Bishop (1997); Van Houtven et al. (2014); Viscusi et al. (2008); Whitehead
et al. (2010)). For example, Dundas and von Haefen (2020) uses one of the largest recreation data sets,
the NOAA’s Marine Recreational Information Program (MRIP) data, to examine the effects of weather on
the shoreline marine recreational fishing demand. While they find the extreme heat significantly reduces
recreation participation across 17 states, their study area is mainly located in the Atlantic and Gulf Coast
regions. Relative to these papers, we use the largest recreation data sets currently available, utilizing cell
phone data from nearly 23 million residents and water quality data across the lower 48 US states. To the best
of our knowledge, our paper provides the first national estimates of recreation demand on water quality in
water-based recreation sites.

We are not the first to use cell phone data, however. This paper contributes to a growing literature
on recreation demand using innovative data. A recent set of papers highlight the potential promise of
innovative data acquisition efforts such as cell phone records (Kubo et al. (2020); Merrill et al. (2020);
Newbold et al. (2022)) and mining of social media data (Ghermandi (2018); Keeler et al. (2015); Sinclair
et al. (2018); Sonter et al. (2016); Spalding et al. (2017); White et al. (2022); Wood et al. (2020)). For example,
Merrill et al. (2020) combines the cell phone data with on-the-ground observations of visitation to water
recreation areas in New England, and then fits a model to estimate daily visitation for four months to more
than 500 sites. Newbold et al. (2022) utilizes remote sensing satellite data and cell phone data to estimate a
recreation demand site-choice model of 100 lakes in California. By using simulated data in a Monte Carlo
analysis, they develop an information valuation framework for harmful algal blooms (HABs) and find the
total value of a perfect early warning system would have been $2.46 million. This paper methodologically
differs from prior recreation demand studies (Moeltner and Englin (2004); Morey et al. (1993); Phaneuf
et al. (2000); Von Haefen and Phaneuf (2003)) by using a random coefficient logit model to estimate the
recreation demand on water quality. Our work also extends prior work in the IO literature by employing a
random coefficient logit model in the context of recreation demand.

The rest of this paper proceeds as follows. Section 2 presents the study area and data. Section 3 describes
structural models used for estimating the water quality impact on recreation demand. Section 4 provides
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results and sensitivity tests. Section 5 examines predicted demand and welfare changes from our non-
marginal change and site closure simulations. Section 7 provides a summary of our findings, limitations of
our study, and implications for future research.

2 DATA AND SUMMARY STATISTICS

2.1 Data

The main data set measuring recreational site visits is taken from the SafeGraph pattern data7. These data
contain information such as aggregated visitor counts to individual amenities from CBGs as well as the
time spent at each site. SafeGraph receives raw GPS data from multiple different mobile app providers
on both iOS and Android systems8. We restrict our sample from 2018 to 2021 and only focus on points of
interest (POIs) within the sub-categories tracking nature park and other similar institutions9. Next, we
focus on recreation sites whose area size is above 1 Ha (10,000 m2) and whose annual visits are more than
500. Finally, to track the annual recreation visits from each CBG (origin) to recreation site (destination), we
decompose the distribution of home visitors’ CBGs for each site at a year-month and then aggregate the
number of visitors at a site from a CBG to a given year10.

Water quality measures from water quality monitors are obtained from EPA’s Water Quality Portal, which
includes water quality monitoring data collected by the United States Geological Survey (USGS), the
Environmental Protection Agency (EPA), and over 400 states, federal, tribal, and local agencies11. We
consider dissolved oxygen (DO), Secchi depth, and Chlorophyll-a as our water quality measures since
they are the three most common measures of water quality in research on water pollution’s economic
impacts (Keiser and Shapiro (2019a)). Secchi depth and Chlorophyll-a are good indicators of water quality
conditions that are noticed by people. DO is critical for fish survival, and water quality that meets the
criteria for fish survival also meets the criteria for most other beneficial water uses and is often of good

7SafeGraph issues updates to Places once per month. The pattern data used in this paper was collected in November 2021.
8It is worth noting that since SafeGraph estimates visits to the site based on smartphone GPS movements, the data do not cover

all actual visitors but rather a subset of users that have a smartphone and who have enabled their phone’s GPS location feature in
various apps. The data could thus be under-representing visitors from demographic groups that have a lower proclivity to own or
use a smartphone (e.g., elderly individuals and low-income residents).

9Another concern about cell phone data is the potential for location error. The mobile GPS positioning can only achieve an
accuracy of roughly 5 meters. When the cell phone device is in dense urban clusters, the app-based GPS positioning might not be
able to distinguish whether a user is in one store or another. However, the recreation site POIs are less likely to have such errors as
outdoor recreation sites are often not located side by side.

10The visitor’s home locations are determined by analyzing 6 weeks of data during nighttime hours (between 6 pm and 7 am).
SafeGraph requires a sufficient amount of evidence (total data points and distinct days) to assign a home (common nighttime)
geohash-7 for the device, which is then mapped to a census block group, census tract, and country of origin. SafeGraph does not
report data unless at least 2 visitors are observed from that group. If there are between 2 and 4 visitors this is reported as 4.

11See more details in here: https://www.waterqualitydata.us/
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ecological status. Based on the imputation performance on water quality data discussed later in this section,
we use Secchi depth as our main water quality measure. Online Appendix B.1 describes details and steps
taken to clean the data.

Several other data are used for our analysis. First, spatial data on rivers and lakes are obtained from the
National Hydrography Dataset (NHD), an electronic atlas mapping all U.S. surface waters. NHD contains
approximately 200 river basins, 2,000 watersheds, 70,000 named rivers, 3.5 million stream and river miles,
and 70 million river nodes in the US. We spatially join the NHD waterbody polygon and river flowline
layer with recreational visits geometry data to determine water-based recreational sites.

Second, daily average temperature and precipitation data are generated from the parameter-elevation
regressions on the independent slopes model (PRISM 2009). The PRISM model divides the contiguous
United States into 2.5 × 2.5 mile grids and uses daily weather station data, while also accounting for factors
such as elevation and wind direction, to interpolate weather measures for each grid location. The PRISM
data are used to control for the impact of weather on recreation trips.

Third, gas cost data are obtained from AAA website12, which provide daily national gas prices and daily
state-level average prices by gas types (regular, mid-grade, premium, and diesel). To calculate the travel
costs for each trip in a year, we scrape the daily snapshot of the AAA website from the Wayback machine
and aggregate it to the monthly level for each state since 2018. We also use the annual national crude oil
price between 2018 and 2021 from U.S. Energy Information Administration (EIA) to address potential
endogeneity issues in the recreation demand estimation.

Last but not least, we use the Open Census data from SafeGraph, which has pre-cleaned the Census data
and packaged it into easy-to-use files for each year of the American Community Survey, each including
over 7500 attributes like income, age, education, etc.13. We use the median household income by CBGs and
year for travel cost calculation.

Finally, we obtain the COVID-19 daily cases and deaths data from New York Times14 and county-day level
stay-at-home orders data from Centers for Disease Controls and Prevention (CDC)15. To control for the
impact of pandemic and lockdown on recreation demand, we aggregate the COVID-19 case and death data

12see https://gasprices.aaa.com/todays-state-averages/
13See https://www.safegraph.com/free-data/open-census-data
14The New York Times. (2021). Coronavirus (COVID-19) Data in the United States, see more information in

https://github.com/nytimes/COVID-19-datacoronavirus-COVID-19-data-in-the-united-states
15See more in: https://data.cdc.gov/Policy-Surveillance/U-S-State-and-Territorial-Stay-At-Home-Orders-Marc/y2iy-8irm/data
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to county-year level and create two indicators for a county implemented the stay-at-home order at a year
and a county confirmed any COVID-19 case at a year.

2.2 Spatial Linkages and Data Description

We link the different data sets described above in three ways. The first involves linking each recreation site
to the associated river or lake. To do that, we begin by obtaining a GIS data layer containing recreation site
polygons from SafeGraph that represents the location and spatial extent of sites in our sample. We then
intersect the recreation site polygon with the waterbody and flowline layers from the National Hydrography
Dataset to identify lake-based and river-based recreation site16. Appendix Figure A1 provides more details.
After doing that, we narrow down our sample to 47,541 recreation sites. The second linkage involves linking
recreation sites to weather conditions. We extract the value of weather data to each recreation site location
and aggregate it to the annual level.

The third involves matching each water quality monitor to the associated river or lake. We spatially join
the station location data collected from EPA Water Quality Portal with the water-based recreation site
polygon to identify corresponding water bodies. The water quality measures for a recreation site are then
calculated by taking the average of water quality measures within a water body for each year. Keiser and
Shapiro (2019a) suggests evidence of disproportionate distribution of sampling frequency across the U.S.
due to hydrology design, monitoring network density, and local government decisions. As a result, it
has been difficult to obtain continuous annual readings for each water quality monitor. To address this
issue, we employ several machine learning techniques (KNN, Mean, Bayesian Ride, Decision Tree, and
MICE) under scenarios with three missing patterns (MCAR, MAR, and MNAR) and four missing fractions
(20%,40%,60%, and 80%) to imputed this imbalanced water quality data17. After comparing the imputation
results across different methods, we impute the Dissolved oxygen and Secchi depth using KNN with 4
neighbors and decide to not use the Chlorophyll-a measure due to the poor imputation performance. We
then spatial join the adjusted recreation site polygon with monitor locations to measure water quality data
for each site. Online Appendix B.2 provides details of each method and discussions on imputation results.

16We visually inspect the intersection between the site polygon and waterbody layer. In some cases, the site polygon only covers
the area where the cell phone device is located but not the lake. We manually adjusted polygon outlines to encompass the complete
infrastructure for each lake. For example, for small lake sites, we union the recreation site polygon with intersected water bodies.
For large lake sites and river sites, we create a 200-meter buffer of recreation site polygon to cover the water bodies adjacent to a
given site. A similar study by Merrill et al. (2022) uses a quarter-mile buffer of each shoreline segment to estimate median water
clarity over the last five years’ summer months. See more details about polygon adjustments inOnline Appendix A.2

17We also consider using 5-year moving average values and satellite image data to impute our water quality measures. One of
the issues with the moving average method is it smooths out the variation across different years, which is what we need for water
quality identification. Ross et al. (2019) provides some additional satellite estimates of Secchi depth and Chlorophyll-a data. After
merging it with our data, we do not find a major increase in water quality observations.
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We then calculate the travel costs based on the monetary travel cost and the opportunity cost of time.18

Specifically, we first estimate the travel distance and duration from the centroid of a census block group to a
recreational site using the Open Source Routing Machine (OSRM)19. The visitor’s opportunity cost of time
in a census block group is measured using the common assumption that it is one-third of the wage rate
implied by the census block group’s average annual income20. Under these assumptions, the total travel
costs (TC) are the sum of travel and time-related expenses:

TCijt = 2 ∗ (gsst + ft) ∗Distijt + 2 ∗ γMedinci
2080

Timeijt (1)

whereDistijt is the one-way distance between the centroid of a CBG and the recreational site; gsst reports the
state-level average gas cost at year t; ft denotes the marginal maintenance cost, repair cost, and depreciation
from AAA reports; we assume γ = 1/3 indicating the share of the value of travel time used to account for
the cost of leisure time, and medinci is the median annual income in the visitor’s CBG. The median income
is divided by 2,080, the number of full-time hours potentially worked in a year.

As the visits data from SafeGraph includes all the recreation trips taken by users from a CBG, people might
fly to a recreation site if it is too far away from the origin CBG. We would expect that the preference for
travel costs in a flight-mode trip could be quite different from the one in a car-mode trip. Furthermore, it
would be difficult to measure the monetary costs associated with flying. Therefore, we restrict ourselves
to trips that are likely taken by car. Appendix Figure A3 shows the distribution of one-way trip travel
distance across census region in our sample. Looking closely at the tail of the distribution, we find most
trips are within a 300-mile travel distance. Thus, we consider it a plausible cutoff to distinguish between a
car-mode trip and a flight-mode trip. We also find similar evidence in the 2017 National Household Travel
Survey. Appendix Figure A4a shows the distribution of one-way trip travel distance for car-mode trips and
Appendix Figure A4b shows the distribution of one-way trip travel distance for flight-mode trips. We find
most car-mode trips are within 300-mile travel distance, while most flight-mode trips are beyond 300-mile
travel distance21.

18This opportunity cost of time must also be factored into travel cost recreational demand models for a more accurate measure
of the value of the recreational experience (Palmquist et al. (2010)).

19In some cases, the open source routing machine failed to calculate the travel distance and duration. Instead, we calculate the
haversine distance between origins and destination and use the ratio of 1.4 to impute the travel distance and travel time based on
observed data. Keiser and Shapiro (2019a) also suggests that the mean ratio of the road distance to the great circle distance is 1.4.

20Lupi et al. (2020) suggests that using a fraction (i.e., between one-third and one-half) of this “average wage” as the value of
travel time is consistent with past precedent in the literature and a small number of recent studies. We also conduct sensitivity
analyses using alternative fractions of the average wage in the Appendix.

21Dundas and von Haefen (2020) also assume that any site within 300 miles (roughly a 6-hour drive one way) of each origin zip
is in the respondent’s choice set. The assumption is based on the notion that 300 miles represent the furthest an individual would
likely be able to travel for a single day of localized recreation.
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After determining the choice sets for each CBG, we calculate the site trip shares in the following steps. First,
we use the statistics of CBG-year-month visitors to estimate the total market size for each census block
group in a given year. Specifically, we take the average number of visitors at a CBG each year and consider
it as the population of the market. Next, we calculate the total market size by multiplying the population
by 115 as we assume that people make 115 recreational choices over a year (once for each weekend or
holiday)22. Finally, the trip share of a single recreational site is then calculated as the ratio of the trips of
this site to the total market size. The outside share is the ratio of the difference between the total market
size and total recreation trips from CBG to the total market size.

With these linkages and assumptions, we construct aggregate data of actual site choices for each CBG from
2018 to 2021. Our final estimation data set consists of 2,840,714 observations corresponding to CBG/site/year
combinations where sampling occurred from 2018 to 2021. These observations are constructed from
individual cell phone devices in 216,073 CBGs across the nation. These residents took a total of 1,364 million
trips, or 6,312 trips per CBG over our study period. On average, recreators traveled 57 miles and took
1.2 hours for a one-way-trip visit. The average travel costs are about $80 between 2018 and 2021. Table 1
provides more details about our final sample23.

Table A1 shows the annual recreation visits in Safegraph sample from 2018 to 2021, averaged over site type
and year24. To make it comparable over time, we consider 2018 as the base year and use the ratio of the total
number of devices at any given year to the total number of devices in 2018 as weights to adjust the average
annual recreation visits for each site type. We obtained 32,145 unique destinations from the SafeGraph
data, out of which 21,131 (65.7%) are parks, 1,206 (3.8%) are river and lake sites, and 2,101 (6.5%) are open
space. This table shows an expected pattern within each type, with annual visits lowest in 2018 and peaking
in 2019. As the pandemic hits the U.S., many recreation sites were closed temporally and the number of
trips to all sites went down except for lake recreation sites. When it comes to 2021, restrictions have become
relaxed or lifted and the visits bounce back to a higher level.

Figure 1 shows how these sites are distributed across the nation. In general, people are less likely to have
access to these recreational resources in the Midwest region than those living in the coastal area. Park

22We also consider alternative market sizes to test the robustness of our results. For example, For people from CBGs adjacent to
the university, they are more likely to be students and have more free time to visit recreation sites. We consider 190 days (including
additional summer time) and 365 days (full year) as the alternative market sizes.

23It is worth noting that, in our data, recreation sites with water quality measures tend to have larger sizes. See more details in
Appendix Table A2

24Site type is defined based on the location name of the recreation site. All types of sites included in Table A1 are identified as
water-based recreation sites.
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sites can be accessed almost everywhere, while Beach and Harbor sites are more likely to be located on
the East and West coast, and Great Lakes region. Figure 2 presents how the recreation visits and Secchi
depth evolved at each site during our study period. Before the pandemic, some sites had fewer visitors and
some sites had more visitors. As the stay-at-home orders took effect across states, a significant number of
recreation sites in the South region experienced a decline in visitation, while recreation sites in the Great
Lakes and Northeast region had more visitors. As restrictions have become relaxed or lifted, travel and
vacations have become more rampant, and recreation sites are seeing an uptick in tourists again. In terms
of water quality, we do not find any clear pattern for Secchi depth measures over time. Figure 3 shows
the spatial variation of visit changes and water quality changes, and their correlation. We find a great
variation in visits while a relatively small variation in Secchi depth. The correlation plots suggest a positive
relationship between the changes in recreation visits and changes in water quality.

3 MODEL

In this section, we specify a model of recreator behavior in order to estimate the recreation welfare effects
of water quality changes. We use a discrete-choice model following the framework of Berry et al. (1995).
Each period, recreators make a decision to visit one of the recreation sites in their choice sets, or the outside
good, any other activities that are not defined as water-based recreation activities. The demand model is
static in that recreators choose myopically, without taking into account the future evolution of travel costs
and other site characteristics.

More specifically, the utility function of visitor i to recreational site j in market t is as follows:

Uijt = δijt + µijt + ϵijt, (2)

where δijt represents the mean utility of site j for visitor from CBG i, and µijt denotes the individual-specific
preference deviation from the mean utility. ϵijt follows i.i.d. Type-I extreme value distribution. The mean
utility δijt is defined as:

δijt = αTCijt + β1WQjt + β2COVIDt + β3WQjt × COVIDt + β4Wjt + β5Xjt + γi + ζj + ξjt, (3)

where TCijt denotes the travel costs from the centroid of census block group i to site j at market t; WQjt

denotes the water quality measures at site j and year t. We include a COVID dummy, a state-year level
lockdown dummy, and county-year level log of cumulative COVID cases to control for the pandemic
impacts and allow for the demand curve to shift. We interact the COVID dummy with water quality
measures to permit preference changes in terms of water quality. Wjt denotes the weather condition at site
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j and year t. We characterize temperature and precipitation using a binning approach. In particular, we
create sets of dummies where average temperature and precipitation fell into one of 10 decile bins. We
include site fixed effects ζj to capture time-invariant unobserved site attributes and CBG fixed effects to
capture unobserved demographic variables that influence the demand for outdoor recreation. Finally,

The individual deviation from the mean utility is defined as

µijt = σtcTCijtνi,tc + σwqWQjtνi,wq + σcCOVIDt + σwqcWQjt × COVIDtνi,wqc (4)

where νi,tc, νi,wq, νi,c and νi,wqc are standard normal draws. Each visitor i makes a discrete choice and
chooses the site j at market t that maximizes her/his random utility Uijt. The discrete choice model allows
opting out. Thus, an “outside good” is introduced into the model. The outside good in our case is all other
activities that do not qualify as recreation. The mean utility of the outside good is normalized to Ui0 = ϵi0.

Assuming that the random utility terms follow the extreme value distributional assumption, the probability
that a utility-maximizing visitor iwill choose attraction j = 1 . . . J in market t takes the following form:

sharejt =

∫
exp(δjt + µijt)∑
k exp(δkt + µikt)

dνi (5)

We leverage panel data and include site fixed effects to control for spatial unobserved factors. There is the
possibility that travel costs are correlated with time-varying unobserved site-specific utility ξjt through
changes in local demand for gasoline or increases in travel time through congestion. Therefore, instruments
are needed to identify the parameter for travel costs. We argue that the interactions between average crude
oil prices and state dummies are uncorrelated with demand shocks ξjt, which control for national factors
that do not vary across markets, such as national fuel price shocks. We also argue the travel distance from
the origin i to recreation site j is uncorrelated with demand shocks ξjt as these are given in the short run
for each visitor. The identifying assumption is that for a vector of instruments Ztc,

E[Ztcξ(θ2)] = 0 (6)

The following equation sets the basis for the estimation of the demandmodel. We estimate the market share
system with a general method of moments estimator. For every parameter guess, we invert the market
system using a contraction mapping to obtain ξ(θ2). Define Ztc to be the matrix of instruments and Atc a
weighting matrix. We estimate θ2 by:

min ξ(θ2)
′ZtcAtcZ

′
tcξ(θ2) (7)
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4 RESULTS

Table 2 shows results from a logit model, where we assume no visitor taste heterogeneity on travel distance
and water quality, using Secchi depth as the measure of water quality. In other words, σ = 0.25. We start
with a model that includes CBG and county fixed effects (column 1), a second model with CBG and site
fixed effects (column 2), a third model with additional weather controls (column 3), a fourth model with
weather and pandemic controls, and a fifth model with a flexible preference on water quality (column
5). Across specifications, the sign on the travel costs is negative, indicating that visitors are less likely to
visit a site if they need to travel a longer distance in a trip. Our preferred specification (column 6) uses the
interaction between crude oil prices and state dummies, and travel distance as instruments for travel costs to
address potential endogeneity issues discussed above. The instruments are strong, with a Kleibergen-Paap
F score of 2125. Using these instruments slightly increase the magnitude of the travel cost coefficients
from -0.0036 to -0.0039, suggesting there is little to no correlation between travel costs and time-varying
unobservable attributes in our sample.

We are particularly interested in the marginal utility of our water quality measure, represented by the
average annual Secchi depth at each site. Comparing the results from column 1 to column 3, we show
the importance of including the site fixed effects and weather conditions to control for the impact of the
spatial unobserved factors as well as the weather on recreation demand. In column 4, as we include the
COVID dummy, the magnitude of Secchi depth coefficients decreases from 0.029 to 0.010, suggesting that
the pandemic not only influences the demand for outdoor recreation but also affects the water quality as
well. In column 5, we allow for preference changes in water quality before and during the COVID. The
coefficient of Secchi depth gives the baseline estimated marginal utility of Secchi depth for people living in
a CBG having the sample average median household income in the pre-COVID period. The coefficient of
the interaction term gives the changes in the marginal utility of Secchi depth during the pandemic relative
to the pre-COVID period. We find evidence of no preference change in water quality in both column 5 and
column 6. To put it in monetary value, we calculate the marginal willingness to pay for Secchi depth by
dividing the water quality coefficient by the negative value of the travel cost coefficient. We find that, for
an average recreator, the willingness to pay for a 1-meter increase in Secchi depth has a 95% confidence
interval ranging from $2.52 to $2.59, with a mean of $2.55, which is in line with previous recreation demand
studies (Ji et al. (2020)) where they find the marginal willingness to pay is about $5-$10 per household.

We also explore the spatial heterogeneity of water quality impact across census regions. Table 3 reports the
25We follow Berry (1994) and use linear regression to produce these estimates.
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recreation demand estimates by census regions. We observe similar positive marginal utility of Secchi depth
in the pre-COVID period with slight differences in magnitude across regions. However, the preference for
water quality shifted in different directions during the pandemic. For example, recreators in the Northeast,
South, and West regions gained a higher marginal utility of water quality during the pandemic, while
Midwest recreators had a lower marginal utility gain fromwater quality improvements. Across the different
regions of our analysis, recreators in the Northeast region are willing to pay an average of $2.16 for marginal
change in Secchi depth, while people in the South region are only willing to pay $1.31 for the changes.
These differences could be due to data limitations as the total observation of non-West regions only accounts
for less than half of the sample in our analysis.

We conduct a number of robustness checks. First, we run our preferred model with alternative polygon
buffers and report the results in Appendix Table C1. We consider adjusted site polygons with 100m, 200m,
300m, 400m, and 500m buffers. The coefficients are relatively similar across the model variants except for
the 100m buffer. This could be due to the fact that a 100m buffer is not large enough to cover the water
bodies that recreators observed. Second, we run our preferred model with alternative travel cost definitions,
including actual travel costs, travel costs excluding the value of travel time, and travel costs including the
full value of travel time (Appendix Table C2). In general, these results show slightly different impacts on
recreational visits and the coefficients of travel costs vary due to the definition changes, which suggests
that the value of travel time plays an important role in understanding recreational behavior.

One concern about our sample is whether we include most of the single-day car-trip visits. Here, we
re-estimate our model with alternative car-mode trip cutoffs, including a 200-mile, 250-mile, 350-mile,
and 400-mile cutoff (Appendix Table C3). We find the coefficient of Secchi depth decreases as the cutoff
increases, while the changes become negligible when the cutoff is larger than 300 miles. In addition to that,
the marginal willingness to pay is robust across all specifications. We also explore the alternative function
form such as water quality dummies or log form of water quality (Appendix Table C4). Results show
significant effects of water quality on recreation visits for Secchi depth and Chlorophyll-a across different
function forms.

Recreators might expect to encounter many other recreators during a visit to a popular site based on prior
experience on this particular site. Some degree of congestion may be desirable as there are pleasant social
interactions among like-minded participants at most destinations. However, this might not be the case
during the pandemic, when people might think a popular site is “too crowded”. Here, we use a set of
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congestion variables, such as visits, visitors, and relative visits/visitors at a site, and a quadratic form of
these variables to test the robustness of our results. The relative visits/visitors are defined as the share of
visits or visitors to a site to the total visits from a CBG in a year26. To capture the prior experience with
congestion, all the congestion variables use the previous year’s data. We present our results in Appendix
Table C5. The coefficients of Secchi depth are slightly larger than the one in our base model and themarginal
willingness to pay varies between $2.5 and $3.5 across all specifications. This suggests the robustness of
our results even after controlling for the impact of prior congestion experience.

Another assumption we make about the “recreation market” is that the total market size of a CBG is the
multiplication of the average annual number of the device at a CBG and the number of holidays and
weekends over a year (115 days), which might not be true for students and other part-time employees.
Therefore, we consider several potential market sizes, including the number of holidays, weekends, and
summer/winter vacations over a year (190 days), a full year(365 days), 115 days for general CBGs and 190
days for CBGs adjacent to the university, and 115 days for general CBGs and 365 days for CBGs adjacent to
the university. We report our results in Appendix Table C6. Our results are robust across specifications.

Finally, we consider alternative cutoffs for the lower bound of site size and annual visits, including no
restriction on size and visits, sites above 1 Hectare, sites above 2 Hectares, and sites above 2 Hectare and
annual visits more than 1,000. We report results in Appendix Table C7. We find the coefficients of Secchi
depth decrease slightly when we restrict our sample to sites the size is above 2 Hectares. We also find
similar results that little to no preference changes for water quality during the pandemic using alternative
cutoffs. Overall, the results are pretty robust across all specifications.

5 THE VALUE OF WATER QUALITY IN RECREATION SITES

In this section, we consider Secchi depth as our main water quality measure and quantify the welfare
effects of three water quality scenarios using our estimated model of recreation demand. We first assess the
recreation benefits from water quality improvements by simulating the compensating variation for all the
recreation sites experiencing improvements in water quality to the level of cleanest site27. Throughout the
counterfactual analysis, we assume that recreation sites do not change other attributes due to the changes
in water quality. We also assume that visitors spent the same travel costs visiting sites in their choice

26A measure of relative congestion, consisting of visits to a given site as a share of all visits to all sites, has been used previously
in the literature (Kolstoe and Cameron (2017); Murdock (2006); Phaneuf et al. (2009); Timmins and Murdock (2007)).

27We define the cleanest lake as the lakes with highest average Secchi Depth measures over our study period. To avoid the
extreme outlier driving the results, we use the 99 percentile of the water quality distribution (9 meters) in the cleanest site as our
counterfactual measures.
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sets. Given the richness of our data, we are able to use recreation preferences for water quality before the
pandemic and investigate the welfare effects of non-marginal changes in water quality when the restrictions
on recreation sites were relaxed in 2021. Assuming no taste heterogeneity on water quality and travel costs,
the utility function we use for the counterfactual analysis is:

V new
ijt = α̂TCijt + β̂1WQjt + β̂4Wjt + γi + ζj + ϵijt (6)

The baseline scenario uses the real water quality measures in 2021, and the predicted water quality change
scenario is constructed by improving the water quality of all sites to the 99 percentile of Secchi depth
distribution in the cleanest lake in 2021. The non-marginal water quality improvements use the basic
compensating variation formula:

CV Cleanest
i = − 1

α
(log(

J∑
j=0

exp(V new
ij |q1))− log(

J∑
j=0

exp(V new
ij |q0))) (7)

CVi is then estimated by calculating the expected changes in utility resulting from non-marginal changes
in water quality. We also rerun our preferred model using data from each census region to explore the
spatial heterogeneity of these welfare changes.

Next, we calculate the welfare changes under two site closure scenarios that are most likely to be considered
by local authorities over our study period: 1) closing the most polluted recreation sites (Secchi depth < 0.5
meters); 2) closing the most popular recreation destinations. Similarly, we rerun the regression within each
census region under each scenario. Without loss of generality, we assume it is site 1, the compensating
variation associated with the closure of a single site is as follows:

CV Closure
i = − 1

α
(log(

J ′∑
j=0

exp(V new
ij |q0))− log(

J∑
j=0

exp(V new
ij |q0))) (8)

Table 4 shows the counterfactual changes under each water quality scenario. Row 1 of Table 4 explores
how the welfare changes for non-marginal changes in Secchi depth in 2021, Our preferred model predicts
an average of $18.36 welfare per capita gains for recreation visitors if the Secchi depth of all sites were
improved to 9 meters nationwide in 2021. The spatial heterogeneity is shown in columns 2-4 of Table 4. we
find that the mean monetary compensation per capita is highest for visitors in the Northeast region at $16.31
and lowest at $9.92 for visitors in the South region. A simple back-of-the-envelope calculation of welfare
impacts would be to multiply the welfare gains from water quality changes by the sample considered in our
study. We find that annual welfare gains would be $433.26 million when the water quality was improved
at all the recreation sites to the 99 percentile of Secchi depth distribution in the cleanest site. Across the
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different regions of our analysis, the Northeast region experiences annual gains of about $60.13 million and
the Midwest region experiences annual gains of about $74.07 million.

Table 4 also reports the welfare changes when closing the most polluted and most popular sites. We find
an average of $37.22 and $115.32 annual welfare loss per capita due to the closures of the most polluted
sites and most popular sites. Looking closer at regional heterogeneity, we find that the mean monetary
compensation per capita to close the most popular site is highest for visitors in the Northeast region at
$132.36 and lowest at $98.75 for visitors in the West region. In contrast, we find that the mean monetary
compensation per capita to close the most polluted site is highest for visitors in the Northeast region at
$48.83 and lowest at $16.26 for visitors in the West region. A simple back-of-the-envelope calculation
suggests that annual welfare losses would be $2.7 billion and $878.37 million under these two site closure
scenarios. Across the different regions of our analysis, the census regions experience annual losses ranging
from $445.34 million to $1 billion for closing the most popular sites and $73.33 million to $464.54 million
for closing the most polluted sites, respectively.

6 DISCUSSION

Our study shows that water quality is likely a strong driver of recreation behavior and welfare changes
from 2018 to 2021. Using the random coefficient logit model, we have found that the welfare gain due to
the improvements in water quality is in order of almost half a billion US dollars. Furthermore, the welfare
losses due to closing the most popular sites and the most polluted sites for each CBG could be substantial.
However, these estimates are conservative in many ways. First, our welfare analysis does not consider the
general equilibrium changes due to the non-marginal changes in water quality. Second, it does not reflect
“nonuse” or “existence” values for clean water due to its pure existence and divorced from any specific uses.
Finally, our estimates ignore potential health benefits generated from the improvements in water quality in
recreation sites.

The compensating variation estimated in our paper is inversely proportional to the recreators’ response to
travel costs and directly proportional to their response to water quality in recreation sites. For instance,
the response of visitors in the West region to travel costs is the largest of the four census regions, showing
that visitors in the West region are less willing to travel long distances than visitors in other places. A
possible explanation is that visitors in the West region have less access to recreation sites than visitors in
other regions. Since the compensation measure is inversely related to the response to travel costs, this
makes the compensation measure for visitors in the West region slightly smaller than that in the Northeast
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and Midwest regions. Our results also suggest that visitors exhibit heterogeneous preferences for water
quality in different regions.

Direct comparison of our results to those of previous water quality studies is imperfect due to the national
scope of our study. Vesterinen et al. (2010) utilizes national recreation inventory data combined with water
quality data to model recreation participation and estimate the benefits of water quality improvements in
Finland. Awater policy scenario with a 1-m improvement in water clarity for both inland and coastal waters
from their study indicates that the consumer surplus would increase $10-$30 per swimmer and $20-$60 per
fisher. Czajkowski et al. (2020) estimates a spatially explicit travel cost model of coastal site recreation to the
Baltic Sea to assess the welfare of accessing individual sites. Their results suggest improving water quality
to blue flag status, where Secchi depth is less than 1 meter, boosts the recreational value by 47-247 EUR
per trip. More recently, Merrill et al. (2022) utilizes water quality metrics derived from remotely sensed
images and uses a travel cost model framework to estimate the value of water quality for coastal recreation
in New England. They find a $4-$5 change for a meter in clarity and the welfare gains from a 20% increase
in Secchi depth is $0.07 per person per trip. This leads to an aggregate annual benefit of $5.7 million for a
20% increase in Secchi depth in Cap Code. Compared to these studies, our measure of compensable gains
is slightly smaller. One potential reason is that these studies focus on the gains from large recreation sites,
while our study includes many large state parks but also those small recreation sites.

How do these compensating estimates compare to the costs incurred to achieve the water quality gains
since the 1972 Clean Water Act? Over the period 1970 to 2014, The United States has spent $2.83 trillion to
clean up surface water pollution, $1.99 trillion to provide clean drinking water, and $2.11 trillion to clean
up air pollution ($2017 dollars)(Keiser and Shapiro (2019b)). For surface water regulations, 67 percent
of regulations fail a benefit-cost test with a 0.79 benefit-cost ratio from 1992 to 2017. Based on the recent
annual spending on surface water pollution and population estimates, an average American needs to pay
for $227 for clean surface water but only gains $179 from the water quality improvements. Keiser and
Shapiro (2019a) examines how CWA grants the federal government gave to cities to improve wastewater
treatment affected US surface water quality. Through these grants, they find the Total Suspended Solids
decreased by 26.36 mg/L from 1972 to 2021 relative to the pre-1972 period. We convert the percentage
changes in TSS to percentage changes in Secchi depth, using the calibrated parameters from Baughman
et al. (2015) and Al-Yaseri et al. (2013). A 52.98% decrease (26.36/49.75) in TSS is equivalent to an 84.66%
increase in Secchi depth. We then calculate the compensating variation where the counterfactual scenario is
constructed by improving the water quality of all sites by 84.66% in 2021. The results suggest an average of
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$3.08 welfare per capita gains for recreation visitors if counterfactual happened. If we consider these benefit
estimates are additive to the current benefits number, our findings add 1.7% to the previously estimated
benefits gained from the Clean Water Act.

The available data on surface water pollution is still poor. Compared to ambient pollution, measuring
water pollution is less common and standardized; water pollution emissions are often self-reported and
systematically suffer from nonreporting; data on health outcomes for water-based recreation are way more
limited. Besides that, since many organizations collect water pollution data, using a range of methods and
devices, it can be even more complex to determine which water quality data are accurate, representative,
and comparable. In recent years, a growing literature has been mapping the water quality parameters using
satellite images over inland lakes (Barrett and Frazier (2016); Chandrasekar et al. (2010); Liu et al. (2017);
Molkov et al. (2019); Olmanson et al. (2008); Pahlevan et al. (2017); Potes et al. (2011, 2012, 2018); Toming
et al. (2016)). Several empirical and structural methods have been explored to provide reliable estimates
for the spatial and temporal cover of water quality parameters. Here, we apply the quasi-analytic algorithm
by Lee et al. (2016) to data from the Sentinel-2 mission (Multi-Spectral Instrument (MSI)). By averaging
the Secchi depth measures from each polygon, we validate the satellite estimates with in-situ water quality
data from Water Quality Portal in Appendix Figure B4 and B5. Results show a strong correlation between
the satellite estimates and in-situ data over years in our sample. More efforts could be undertaken in this
area to help enrich the water quality database and have a better understanding of recreation behavior for
all recreation sites.

7 CONCLUSION

This paper extends the literature on examining the effects of water quality on recreation demand using
innovative cell phone data. By developing a random utility site choice model, we demonstrate the feasibility
of using cell phone data to estimate the value of water quality in water-based recreation sites. Results from
our preferred model suggest that water quality is likely a strong driver of recreation behavior changes over
our study period. Recreators are willing to pay an average of $2.55 for a 1-meter increase in Secchi depth
in the sites they visited. Furthermore, we find some evidence of spatial heterogeneity in water quality
preference such that the MWTP for Secchi depth varies from $1.3 to $2.2 across census regions. We simulate
three water quality scenarios that show a significant willingness to pay for water quality improvements
and avoiding site closure. We find the benefits from improving the water quality of all sites to the level of
the cleanest site is $433.26 million, with spatial heterogeneity across census regions ranging from $50.7
million to $ 100.4 million. Additionally, the welfare losses due to the most popular and polluted site closure
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are $2.7 billion and $878.37 million, respectively. Revisiting the water quality changes from 1972 to 2001,
Our findings add 1.7% to the previously estimated benefits gained from the Clean Water Act.

Our results are subject to a few important caveats. First, the cell phone data has several limitations on
our analysis. Safegraph collects location information through cell phone GPS, the data could thus be
under-representing elderly and low-income individuals. Even though evidence has been shown that
the general visitation data is U.S. representative at the state and county level, it is not clear whether the
recreation visit samples are representative at any geography level. Given that, we suggest caution in
interpreting our welfare results for the general population. Second, our logit model helps us quantify
the effects of water quality on recreation demand but relies on the assumption that recreators leave the
market after visiting recreation sites and do not visit again at each period. Third, our results are limited by
assuming visitors participated in similar activities to the recreation sites. Water bodies provide a series
of water-related services to humans, such as boating, swimming, or fishing. Failing to link the recreation
activities to visitation significantly limited our analysis to understand the value of water quality across
different water-related services. Our welfare estimates in the first scenario should be interpreted as the
average value of water quality improvements across all types of recreation activities. Last, we are also
limited by the availability of water quality data. Despite the great efforts we have devoted to collecting and
imputing the water quality data, the data limitation precludes us explore recreation behavior across all
the water-based recreation sites. Our welfare estimates assume recreators have similar responses to water
quality changes in recreation sites where water quality measures are not available.

Despite these limitations, our modeling approach provides a starting point for providing national estimates
of the overall impacts of water quality on outdoor recreation. The framework of this paper can be applied to
study other settings such as estimating the effectiveness of earlywarning systems for harmful algal blooms or
evaluating the water quality monitoring and mitigation programs. Our paper motivates two lines of future
work. First, The new innovative data such as cell phone records and social media geotagged data provide
a new solution to gather environmental data at high temporal frequency and spatial resolution. More
calibration and external validity checks are needed to understand the plausibility of the data on recreation
demand studies. Second, a growing remote sensing literature leverages the information from satellite
images to calibrate the satellite estimates of inland water quality. More efforts could be undertaken in this
area to help enrich the water quality database and facilitate the development of models for environmental
research.
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Table 1. Summary Statistics

Count Mean S.D. Min Max

Water Quality Measures

Secchi Depth (m) 2,840,714 1.35 1.07 0.10 9.00
Secchi Depth > 1m 2,840,714 0.19 0.39 0.00 1.00
Dissolved Oxygen (mg/L) 5,286,139 7.78 1.78 0.06 14.30
Dissolved Oxygen> 8 mg/L 5,286,139 0.50 0.50 0.00 1.00

Travel Costs

Travel Costs ($) 2,840,714 79.92 96.08 0.04 851.11
Regular Gas Prices ($) 2,840,714 11.11 1.67 7.81 17.88
Depreciation (cent) 2,840,714 22.90 1.81 21.43 26.00
Maintenance (cent) 2,840,714 8.96 0.47 8.21 9.55
Median Household Income ($1,000) 2,840,714 37.09 19.11 1.20 120.19
Travel Distance (mile) 2,840,714 56.61 69.58 0.01 300.00
Travel Duration (h) 2,840,714 1.21 1.35 0.00 8.70

Recreation Visits

Visitors 2,840,714 14.12 78.40 4.00 44171.00
Outside Options 2,840,714 20549.77 32526.64 97.42 3,127,158
Trip Share 2,840,714 0.0010 0.0027 0.0000 0.2300
Outside Share 2,840,714 0.9530 0.0262 0.6003 0.9994
Area (Hectare) 2,840,714 32.52 103.66 1.00 6018.06
Dummy for University CBG 2,840,714 0.05 0.21 0.00 1.00

Weather Condition

Mean Temparature (C) 2,840,714 16.21 5.82 2.14 26.89
Precipitation (mm) 2,840,714 1241.46 385.69 123.77 3226.29
Cumu. COVID cases 2,840,714 1,541,002 3,685,849 0.00 48,739,445
Cumu. COVID deaths 2,840,714 23953.53 58113.30 0.00 849402

Notes: Statistics for each variable are calculated only across the recreation sites with water quality
measures. For travel costs, regular gas prices, maintenance, depreciation, and median household
income variables, all means, standard deviations, minimums, and maximums are in CPI-deflated 2018
U.S. dollars. For additional details, see Section 2.
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Table 2. Recreation Demand Regression Results

(1) OLS (2) OLS (3) OLS (4) OLS (5) OLS (6) IV

Travel Costs -0.003*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Secchi Depth -0.006*** 0.057*** 0.029*** 0.010*** 0.010*** 0.010***
(0.001) (0.002) (0.002) (0.002) (0.002) (0.002)

COVID 0.194*** 0.194*** 0.186***
(0.010) (0.010) (0.002)

Secchi Depth X COVID -0.000 -0.000
(0.001) (0.001)

ln(Cumu. Cases) -0.002*** -0.002*** -0.002***
(0.000) (0.000) (0.000)

Lockdown Dummy 0.022*** 0.022*** 0.022***
(0.007) (0.007) (0.007)

Observations 2819946 2819946 2819946 2819946 2819946 2819946
N(BlockGroup) 155145 155145 155145 155145 155145 155145
CBG FEs Yes Yes Yes Yes Yes Yes
Site FEs Yes Yes Yes Yes Yes
Weather FEs Yes Yes Yes Yes
MWTP -1.949 15.116 7.618 2.512 2.551 2.554
Kleibergen-Paap F 2125

Notes: Table 2 shows the results of running the recreation demand model without visitor taste heterogeneity on travel
distance and water quality. Column 1 includes county and CBG fixed effects; column 2 includes site and CBG fixed
effects; column 3 adds additional weather controls; column 4 adds additional weather and pandemic controls; column
5 adds additional weather and pandemic controls, and interaction between Secchi depth and COVID dummy; column
6 uses the interaction between crude oil price and state dummies, and travel distances as instruments for travel costs
(CPI-deflated to 2018 dollars). The standard error is clustered at CBG level. Robust standard errors are in parentheses.
***,**,* denotes statistical significance at the 1%, 5%, and 10% levels, respectively. For additional details, see Section 4.
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Table 3. Spatial Heterogeneity: Recreation Demand Regression Results

(1)US (2)Northeast(3)Midwest (4)South (5)West

Travel Costs -0.004*** -0.004*** -0.004*** -0.004*** -0.007***
(0.000) (0.000) (0.000) (0.000) (0.000)

Secchi Depth 0.010*** 0.008 0.008*** 0.005* 0.011**
(0.002) (0.005) (0.003) (0.003) (0.005)

COVID 0.194*** 0.457*** -0.987*** -1.348*** -1.152***
(0.010) (0.015) (0.028) (0.023) (0.065)

Secchi Depth X COVID -0.000 0.021*** -0.007*** 0.014*** 0.025***
(0.001) (0.002) (0.001) (0.002) (0.002)

ln(Cumu. Cases) -0.002*** -0.014*** 0.063*** 0.084*** 0.067***
(0.000) (0.000) (0.002) (0.001) (0.003)

Lockdown Dummy 0.022*** 0.046*** -0.093*** -0.037** 0.050
(0.007) (0.013) (0.011) (0.016) (0.048)

Observations 2819946 438040 678698 1511951 191215
N(BlockGroup) 155145 32572 39782 59829 22957
CBG FEs Yes Yes Yes Yes Yes
Site FEs Yes Yes Yes Yes Yes
Weather FEs Yes Yes Yes Yes Yes
MWTP 2.551 2.162 1.972 1.315 1.723

Notes: Table 3 shows the spatial heterogeneity of running the recreation demand model without visitor
taste heterogeneity on travel distance and water quality. Column 1 only includes recreation sites in the
Northeast region; column 2 only includes recreation sites in the Midwest region; column 3 only includes
recreation sites in the South region; column 4 only includes recreation sites in the West region. The
standard error is clustered at CBG level. Robust standard errors are in parentheses. ***,**,* denotes
statistical significance at the 1%, 5%, and 10% levels, respectively. For additional details, see Section 4.
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Figure 1. National Map of Water-based Recreation Sites by Type

Notes: Figure 1 shows the distribution of water-based recreation sites from SafeGraph data. These sites are identified
by intersecting the recreation site polygon from SafeGraph with the waterbody and flowline layers from the National
Hydrography Dataset. We obtained 32,145 unique destinations from the SafeGraph data, out of which 21,131 (65.7%)
are parks, 1,206 (3.8%) are river and lake sites, and 2,101 (6.5%) are open space. For additional details, see Section 2.
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Figure 2. Temporal Variation of Recreation Visits and Water Quality

(a) Visit Changes (2018-2019) (b) Secchi Depth Changes (2018-2019)

(c) Visit Changes (2019-2020) (d) Secchi Depth Changes (2019-2020)

(e) Visit Changes (2020-2021) (f) Secchi Depth Changes (2020-2021)

Notes: Figure 2 shows the temporal changes in recreation visits and water quality measures across sites. Figure 2a, 2c,
and 2e show a decline in recreation visits in 2020 and then an increase in 2021. For additional details, see Section 2.
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I love that dirty water?
Value of water quality in recreation sites

Christopher R. Knittel, Jing Li, and Xibo Wan

Appendices for Online Publication
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These appendices supplement our article “I love that dirty water? Value of water quality in
recreation sites” with the following material:

• Online Appendix A includes additional details of spatial links across datasets, the spatial
and temporal changes in average temperature, precipitation, and alternative water quality,
and additional details of recreation visits and water quality measures.

• Online Appendix B contains details of data cleaning and imputation on water quality data

• Online Appendix C provides robustness checks on results from our preferred logit model.
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Online Appendix A ADDITIONAL EVIDENCE

Online Appendix A.1 Summary Statistics

Table A1. Annual Recreation Visits by Site Type

Count 2018 2019 2020 2021

Beach&Harbor 966 9879.50 10860.26 10605.56 11331.44
Hill 1,082 6096.41 8922.58 8384.85 8968.63
Open Space 2,101 7325.52 8976.90 8350.61 9234.63
Others 3,698 16920.54 21543.16 17206.60 20713.23
Trail 783 12195.62 15148.86 14033.27 13668.81
Lake 677 5967.72 6765.48 6818.39 7077.45
Park 21,131 6993.88 9830.34 9400.84 10480.21
River 529 7203.53 8313.50 8096.90 8391.82

Notes: Annual recreation visits and visitors in Safegraph sample from 2018 to 2021, averaged over
site types. Device counts are normalized to the 2018 sample. For additional details, see Section 2.

35



Table A2. Summary Statistics of Recreation Sites by Water Quality Availability

Count Mean S.D Min Max

Panel A: Sites with Secchi
Depth Measures

Travel Costs ($) 1,790 63.42 37.21 13.70 330.40
Travel Distance (mile) 1,790 44.61 26.83 8.35 209.71
Travel Time (h) 1,790 0.98 0.55 0.21 4.28
Area (Hectare) 1,790 422.12 1836.31 1.00 60180.64
Mean Temperature (C) 1,790 15.83 6.39 2.14 26.89
Precipitation (mm) 1,790 1217.60 394.00 142.40 3202.80

Panel B: Sites without Secchi
Depth Measures

Travel Costs ($) 30,355 53.23 34.92 10.74 436.48
Travel Distance (mile) 30,355 36.70 23.94 6.98 227.70
Travel Distance (mile) 30,355 0.80 0.50 0.13 5.46
Area (Hectare) 30,355 75.41 396.36 1.00 11055.82
Mean Temperature (C) 30,355 13.80 4.39 1.92 27.39
Precipitation (mm) 30,355 1109.30 457.54 39.10 3621.02

Notes: Table A2 show the means, standard deviations, minimums, and maximums for each variable
in sites with and without Secchi depth measures. Travel costs are in CPI-deflated 2018 U.S. dollars.
For additional details, see Section 2.
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Online Appendix A.2 Spatial Matching among Sites, Water Bodies, and Water Quality Monitors

we follow several steps to match recreation sites with water bodies and water quality monitors. In the first
step, we identify water-based recreation by intersecting the recreation site polygon with the waterbody and
flowline layers from the National Hydrography Dataset. We define a site as a lake site as long as a site
intersects with any water body and define a river site if a site only intersects with river flowlines. Figure
A1a and A1a show how we process this matching.

In the second step, we introduce two methods to adjust the recreation site polygon to encompass the
complete infrastructure and adjacent water bodies. For sites intersecting with small or medium lake water
bodies, we union the recreation site polygon with adjacent lake water bodies and create the corresponding
convex hull polygon as the adjusted polygon. Figure A2c presents the convex hull polygon of water-based
recreation sites (denoted as brown). For sites intersecting with large lakes or rivers, we create a series of
buffers of recreation site polygons to include the water bodies adjacent to a given site. Figure A2 gives an
example of recreation site polygon adjustment. Figure A2d presents a 200-meter buffered polygon of
water-based recreation sites (denoted as orange).

In the last step, we spatial join the adjusted site polygons with water quality monitors geo-locations and
estimate the average water quality based on the available water quality measures within each site polygon.

37



Figure A1. Recreation Sites, Water Bodies, and Water Quality Monitors Matching

Notes: Figure A1 shows how we spatially match up recreation sites, water bodies, and water quality monitors. Figure
A1a shows the recreation sites (denoted as purple) in Cambridge, Boston. Figure A1b plots the water-based recreation
sites (denoted as pink) overlap with water bodies (denoted as green). Figure A1c presents the water-based recreation
sites with water quality monitors (denoted as gray). Figure A1d depicts a 200-meter buffer for the water-based
recreation sites with water quality monitors (denoted as brown). For additional details, see Section 2.
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Figure A2. Adjustments on Recreation Sites Polygon

(a) Recreation Site Polygon (b) Site Polygon and Water Bodies

(c) Convex Hull Polygon (d) Buffer Polygon

Notes: Figure A2 shows how we adjust recreation sites’ polygon based on the size and shape of water bodies. Figure
A2a shows the raw recreation sites polygon from SafeGraph geometry data. Figure A2b plots the recreation site
polygon (denoted as pink) and intersected water bodies (denoted as green). Figure A2c presents the convex hull
polygon of water-based recreation sites (denoted as brown). Figure A2d presents the buffered polygon of water-based
recreation sites (denoted as orange). For additional details, see Section 2.
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Online Appendix A.3 Cutoffs for Single Day Car-mode Trips

Figure A3. Distribution of Travel Distance by Census Region

Notes: Figure A3 shows the distribution of travel distance from each origin to destination by census region in our
sample. For visualization purposes, we restrict our sample to trips of which the travel distance is less than 85 percentile
of the distribution. The Census region is based on the visitor’s home location. We use a 300-mile travel distance as
the cutoff to distinguish car-mode trips from flight-mode trips. For additional details, see Section 2.
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Figure A4. Distribution of Travel Distance by State and Trip Mode

Notes: Figure A4 shows the distribution of travel distance by the state for car-mode and non-car-mode trips in the 2017
National Household Travel Survey. Figure A4a shows most car-mode trips are within a 300-mile distance. Figure A4b
presents the distribution of travel distance by state and by trip mode. We find some evidence that flight-mode trips
often travel more than 300 miles. For additional details, see Section 2.
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Online Appendix A.4 Statistics for Weather, Water Quality, and Recreation Visits

Figure A5. Spatial Variation of Average Temperature and Precipitation

(a) Temperature Changes (2018-2019) (b) Precipitation Changes (2018-2019)

(c) Temperature Changes (2019-2020) (d) Precipitation Changes (2019-2020)

(e) Temperature Changes (2020-2021) (f) Precipitation Changes (2020-2021)
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Figure A6. Spatial Variation of Dissolved Oxygen and Chlorophyll-a

(a) Dissolved Oxygen Changes (2018-2019) (b) Chlorophyll-a Changes (2018-2019)

(c) Dissolved Oxygen Changes (2019-2020) (d) Chlorophyll-a Changes (2019-2020)

(e) Dissolved Oxygen Changes (2020-2021) (f) Chlorophyll-a Changes (2020-2021)
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Figure A8. Correlation between Recreation Visits and Water Quality

(a) Dissolved Oxygen Changes (b) Chlorophyll-a Changes
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Online Appendix B WATER QUALITY DATA AND IMPUTATION

Online Appendix B.1 Water Pollution Data

Our analysis includes only rivers, streams, and lakes. This excludes estuaries, oceans, wells, pipes, canals,
dams, and others that are not river or lake samples. Specifically, we limit the data to rivers/streams and
lakes in a few steps. First, we restrict the sample media to surface water, which removes typically less than
1 percent of records that are coded as other media subtypes such as effluent or groundwater. Next, we
limit the type to lake, reservoir, impoundment, or stream28.

We use the characteristic name to filter out our main water quality measures. A single characteristic
name often corresponds to multiple parameter codes. The EPA concordance provides the meaning of
parameter codes, including information on sample preparation (e.g., details regarding filter size), whether
the measurement was in the field or laboratory, measurement units, result sample fraction (e.g., total versus
dissolved), result statistical basis (e.g., mean, median), and additional measurement method details. See
more details on the Water Quality Portal website. For dissolved oxygen, we collect water quality data under
"Dissolved oxygen" and "Dissolved oxygen (DO)". For Secchi Depth, we collect data under name of "Secchi
depth", "Depth, Secchi disk depth", "Depth, Secchi disk depth (choice list)", and "Secchi Reading Condition
(choice list)". For Chlorophyll-a, we collect data under name of "Chlorophyll a" and "Chlorophyll A".

We impose several sample exclusions. We drop observations with missing observation dates, latitude, and
longitude, and outside the continental U.S. We limit to latitude and longitude observations that are located
within a U.S. county. We also limit analysis to ambient monitoring. To limit the influence of outliers, for
each reading above the 99th percentile of the distribution of readings, separately by pollutant, we recode
the result to equal the 99th percentile. For all pollutants, we keep all records with unit data that are easily
converted to standard units. In our data, the tuple of a station’s name, the name of the agency that manages
it, and the repository uniquely identify a station. We use longitude and latitude to define monitoring sites
given the fact that monitors from different repositories could potentially have the same longitude and
latitude. Next, we do not account for reading depth since many depth values have missing units. Finally, to
make the most of the data from the water quality portal, we extract any letter from the results such as B, C,
I, J, K, L, M, N, O, P, T, U, W, Z, and $ to get clean numeric measures on water quality.

28We consider a monitor as river monitor if the type is "river", any type containing "river", "stream", and any type containing
"stream". We consider a monitor as a lake monitor if the type is "Lake, Reservoir, Impoundment, or pond".
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Online Appendix B.2 Water Quality Imputation

One of the challenges in this study is represented by the high percentage of missing data (between 60%
and 80%) and the high temporal and spatial variability that characterizes the water quality variables. We
considered machine learning techniques to impute our water quality measures from EPA’s water quality
portal. After imputation, we spatial join the water quality monitors with adjusted site polygon and then take
the average of water quality measures within each recreation site polygon as our water quality measures
for a site. Appendix Figure A1d provides an example of adjusted recreation site polygons in Cambridge,
Boston.

Specifically, the competing algorithms implement Mean imputation, Bayesian Ridge (BR)29, Decision Tree
Regressor (DT)30, Multivariate Imputation by Chained Equations (MICE)31, and K-nearest neighbors
Regressor (KNN)32. After imputing the data, we use Random Forest Regressor to test the accuracy of the
imputed data33. We use scikit-learn to implement the above algorithms. We consider 12 missing data
scenarios for the data imputation. Rubin (1976) classified missing data problems into three categories.
In his theory, every data point has some likelihood of being missing. The process that governs these
probabilities is called the missing data mechanism or response mechanism. If the probability of being
missing is the same for all cases, then the data are said to be missing completely at random (MCAR), which
is often unrealistic for the data at hand. If the probability of being missing is the same only within groups
defined by the observed data, then the data are missing at random (MAR). Modern missing data methods
generally start from the MAR assumption. MCAR is often unrealistic for the data at hand. If neither MCAR
nor MAR holds, then we speak of missing not at random (MNAR). Strategies to handle MNAR are to find
more data about the causes for the missingness, or to perform what-if analyses to see how sensitive the
results are under various scenarios. We also consider 4 types of missing data fractions (20%, 40%, 60%, and
80%) to better understand how these algorithms perform under each scenario.

The analysis proceeds in the following three steps. First, the dataset was pre-processed before any analysis
29It is an estimator that assumes and predicts the target by calculating its probability distribution during training. This method

can cope with data sparsity more effectively than other methods.
30It is a regressor that predicts the value of a target variable by learning simple decision rules inferred from the data features.
31it is a robust, informative method of dealing with missing data in datasets. The procedure ‘fills in’ (imputes) missing data in a

dataset through an iterative series of predictive models. In each iteration, each specified variable in the dataset is imputed using
the other variables in the dataset. These iterations should be run until it appears that convergence has been met.

32It is a regressor that calculates the distance (using all variables) from the target point to the others and makes a prediction by
interpolating the nearest neighbors in the dataset.

33Random Forest is an ensemble learning method for classification, regression, and other tasks that operates by constructing a
multitude of decision trees at training time. For classification tasks, the output of the random forest is the class selected by most
trees. For regression tasks, the mean or average prediction of the individual trees is returned.
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to deal with the different units, orders of magnitude, not unified variable names, and different sampling
frequencies. Second, we assess each selected imputation model, calculate their loss functions, and conduct
cross-validation to compute the Nash-Sutcliffe efficiency (NSE).

NSE = 1−
∑n

i=1(x
0
i − xci )

2∑n
i=1(x

0
i − x0i )

2
(B1)

where x0i is the ith observed value, xci is the ith imputed value, x0i is the mean of observed values. NSE
varies between -∞ and 1. If NSE is 1, the imputed values match the records perfectly. If NSE is 0, the
imputed values are as good as the observation mean. If NSE is negative, the observation mean is a better
predictor than imputed values. Therefore, higher NSE values are desirable since they indicate a more
accurate imputation model; For chemical water quality measure, we think the imputation result is very
good if NSE larger than 0.65; good if NSE is between 0.5 and 0.65; satisfactory if NSE is between 0.35 and
0.5; and unsatisfactory if NSE is less than 0.35.

The dataset consists of 44,869 time series (11 years × 4,079 monitoring stations) for Dissolved Oxygen,
33,165 time series (11 years × 3,015 monitoring stations) for Secchi Depth, 5,687 time series (11 years × 517
monitoring stations) for Chlorophyll-a. To evaluate the performance of the different imputation models
adopted and to choose the best one for each feature, k-fold cross-validation with k = 10 was used in this
study. The dataset was min-max normalized before any analysis to deal with the different units and orders
of magnitude. The best models were the ones with the optimal hyper-parameters.

Figure B1 shows the results of Secchi depth for each model under 12 missing data scenarios. Overall,
the imputation performance is adequate except for MICE. Among these methods, the NSE varies from
0.35-0.6 across missing data patterns and missing data fractions. KNN (neighbor=3/4/5) shows very good
performance when the percentage of missing data is small and performs good when the percentage is
large. Similarly, in Figure B2, the performance of Dissolved Oxygen imputation is between Satisfactory
and very good across missing data patterns and missing data fractions. In contrast, in Figure B3, the NSE
of Chlorophyll-a impuation is around 0.4 when the percentage of missing data is small and performs
unsatisfactory when the percentage is large, suggesting these algorithms might not impute the missing
value very well in Chlorophyll-a measure. Given the performance of imputation on each water quality
measure and the percentage of missing data in our sample, We use the KNN regressor with 5 neighbors as
our best model to impute the Secchi depth and dissolved oxygen data. We will only use the buffer method
to calculate the average Chlorophyll-a measure.
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Figure B1. Water Quality Imputation on Secchi Depth

Notes: Figure B1 shows NSE scores of Secchi Depth using machine learning algorithms. We consider 12 missing data
scenarios (3 missing data patterns and 4 missing data fractions). We use Nash-Sutcliffe efficiency (NSE) to evaluate
the performance of the imputation results. For additional details, see Online Appendix B.2.
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Figure B2. Water Quality Imputation on Dissolved Oxygen

Notes: Figure B2 shows NSE scores of Dissolved Oxygen using machine learning algorithms. We consider 12 missing
data scenarios (3 missing data patterns and 4 missing data fractions). We use Nash-Sutcliffe efficiency (NSE) to
evaluate the performance of the imputation results. For additional details, see Online Appendix B.2.
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Figure B3. Water Quality Imputation on Chlorophyll-a

Notes: Figure B3 shows NSE scores of Chlorophyll-a using machine learning algorithms. We consider 12 missing data
scenarios (3 missing data patterns and 4 missing data fractions). We use Nash-Sutcliffe efficiency (NSE) to evaluate
the performance of the imputation results. For additional details, see Online Appendix B.2.
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Online Appendix B.3 Satellite Estimate of Water Quality Measures

A growing literature has beenmapping the water quality parameters using satellite images over inland lakes
(Barrett and Frazier (2016); Chandrasekar et al. (2010); Liu et al. (2017); Molkov et al. (2019); Olmanson
et al. (2008); Pahlevan et al. (2017); Potes et al. (2011, 2012, 2018); Toming et al. (2016)), while most of
them focus on certain lakes or regions. In this section, we explore reliable remote sensing methods for
the spatial and temporal cover of water quality parameters to provide an additional view of water quality.
Specifically, we develop the Secchi depth measurements by applying the quasi-analytic algorithm by Lee
et al. (2016) to data from the Sentinel-2 mission (Multi-Spectral Instrument (MSI)). This algorithm has
shown promise in lakes as well as coastal waters (Merrill et al. (2022)).

The Sentinel-2 mission consists of a constellation of two polar-orbiting satellites, Sentinel-2A and Sentinel-
2B, each one equipped with an optical imaging sensor (MSI). Sentinel-2A was launched on 23 June 2015
and Sentinel-2B followed on 7 March 2017. These twin polar-orbiting satellites allow a high 2-3 days
revisit time for Alqueva reservoir since July 2017. MSI data are acquired in 13 spectral bands in the visible
and near-infrared and have very high spatial resolution, with three bands at 60 m, six bands at 20 m and
four bands at 10 m. The dataset used in this study is the Sentinel-2 Level-1A product, in which spectral
reflectances have been atmospherically corrected through the Sen2Cor algorithm.

We follow several steps to derive the Secchi depth measurements. First, we derive Ktr
d from Sentinel-

2 images. Second, following the new underwater visibility theory, the Secchi-disk depth is inversely
proportional to the diffuse attenuation coefficient and can be expressed (Lee et al., 2015a)

ZSD =
1

2.5Min(Ktr
d )

ln(
|0.14−Rtr

r s|
0.013

) (B1)

whereKtr
d is the diffuse attenuation coefficient at the transparent window of the water body within the visi-

ble domain (410–665 nm), Rtr
r s is the remote-sensing reflectance corresponding to this wavelength. Finally,

we use the in-situ measurements from Water quality portal to validate the Secchi depth measurements we
derived from satellite images. See more details in Lee et al. (2016). Appendix Figure B4 and B4 shows a
strong correlation between estimated Secchi depth and in-situ water quality measures.
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Figure B4. Validation on Secchi Depth Measurements using Raw Data

(a) 2018 (b) 2019

(c) 2020 (d) 2021

Notes: Figure B4 shows validation results using derived Secchi depth from Sentinel-2A images and raw water quality
data from the water quality portal. For additional details, see Section 2.
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Figure B5. Validation on Secchi Depth Measurements using Imputed data

(a) 2018 (b) 2019

(c) 2020 (d) 2021

Notes: Figure B5 shows validation results using derived Secchi depth from Sentinel-2A images and raw water quality
data from the water quality portal. For additional details, see Section 2.
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Online Appendix C ROBUSTNESS CHECKS AND SENSITIVITY TESTS

Table C1. Robustness Checks: Alternative Recreation Site Buffer
(1) (2) (3) (4) (5)

Travel Costs -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000) (0.000) (0.000)

COVID 0.196*** 0.193*** 0.200*** 0.215*** 0.217***
(0.010) (0.010) (0.009) (0.009) (0.009)

Secchi Depth 0.004* 0.010*** 0.010*** 0.012*** 0.011***
(0.002) (0.002) (0.002) (0.002) (0.002)

Secchi Depth X COVID 0.006*** -0.000 -0.002** -0.003*** -0.003***
(0.001) (0.001) (0.001) (0.001) (0.001)

ln(Cumu. Cases) -0.002*** -0.002*** -0.002*** -0.002*** -0.003***
(0.000) (0.000) (0.000) (0.000) (0.000)

Lockdown Dummy 0.013* 0.022*** 0.018** 0.018** 0.027***
(0.008) (0.007) (0.007) (0.007) (0.007)

Observations 2503106 2819946 3002282 3206806 3362367
N(BlockGroup) 149974 155145 156899 158763 160905
CBG FEs Yes Yes Yes Yes Yes
Site FEs Yes Yes Yes Yes Yes
Weather FEs Yes Yes Yes Yes Yes
MWTP 0.967 2.572 2.631 3.311 3.033
Buffer 100m 200m 300m 400m 500m

Notes: Table C1 shows the results of running the recreation demand model using alternative polygon
buffers. The standard error is clustered at CBG level. Robust standard errors are in parentheses. ***,**,*
denotes statistical significance at the 1%, 5%, and 10% levels, respectively. For additional details, see
Section 4.
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Table C2. Robustness Checks: Alternative Definition of Travel Costs
(1) (2) (3) (4)

Travel Costs -0.004*** -0.004*** -0.006*** -0.002***
(0.000) (0.000) (0.000) (0.000)

Secchi Depth 0.010*** 0.010*** 0.007*** 0.012***
(0.002) (0.002) (0.002) (0.002)

COVID 0.194*** 0.220*** 0.186*** 0.203***
(0.010) (0.011) (0.009) (0.010)

Secchi Depth X COVID -0.000 0.001 -0.000 0.000
(0.001) (0.001) (0.001) (0.001)

ln(Cumu. Cases) -0.002*** -0.004*** -0.001*** -0.002***
(0.000) (0.000) (0.000) (0.000)

Lockdown Dummy 0.022*** 0.035*** 0.022*** 0.022***
(0.007) (0.008) (0.007) (0.007)

Observations 2819946 2041946 2867391 2819946
N(BlockGroup) 155145 120906 157849 155145
CBG FEs Yes Yes Yes Yes
Site FEs Yes Yes Yes Yes
Weather FEs Yes Yes Yes Yes
MWTP 2.551 2.529 1.245 5.531
Definition Oper.+

1/3Oppo.
Oper.+
1/3Oppo.

Oper. Oper.+
Oppo.

Notes: Table C2 shows the results of running the recreation demandmodel using alternative
definitions of travel costs. All specifications include site and CBG fixed effects, and weather
controls. Column 1 uses CPI-Deflated operation costs and one-third of the value of travel
time ($2018); column 2 uses actual operation costs and one-third of the value of travel time;
column 3 only includes CPI-Deflated operation costs ($2018); column 4 uses operation
costs and full value of travel time. The standard error is clustered at the CBG level. Robust
standard errors are in parentheses. ***,**,* denotes statistical significance at the 1%, 5%,
and 10% levels, respectively. For additional details, see Section 4.
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Table C3. Robustness Checks: Alternative Car-mode Trip Cutoffs
300 mile 200 mile 250 mile 350 mile 400 mile

Travel Costs -0.004*** -0.006*** -0.005*** -0.003*** -0.003***
(0.000) (0.000) (0.000) (0.000) (0.000)

Secchi Depth 0.010*** 0.015*** 0.013*** 0.009*** 0.008***
(0.002) (0.002) (0.002) (0.002) (0.002)

COVID 0.193*** 0.205*** 0.197*** 0.192*** 0.182***
(0.010) (0.010) (0.010) (0.009) (0.009)

Secchi Depth X COVID -0.000 0.001 0.000 -0.000 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

ln(Cumu. Cases) -0.002*** -0.002*** -0.002*** -0.002*** -0.001***
(0.000) (0.000) (0.000) (0.000) (0.000)

Lockdown Dummy 0.022*** 0.025*** 0.024*** 0.020*** 0.027***
(0.007) (0.008) (0.008) (0.007) (0.007)

Observations 2819946 2613454 2723521 2890624 2948650
N(BlockGroup) 155145 145086 150051 156287 162831
CBG FEs Yes Yes Yes Yes Yes
Site FEs Yes Yes Yes Yes Yes
Weather FEs Yes Yes Yes Yes Yes
MWTP 2.572 2.405 2.654 2.664 2.669

Notes: Table C3 shows the results of running the recreation demand model using alternative car-
mode trip cutoffs. All specifications include site and CBG fixed effects, and weather controls. The
standard error is clustered at the CBG level. Robust standard errors are in parentheses. ***,**,*
denotes statistical significance at the 1%, 5%, and 10% levels, respectively. For additional details,
see Section 4.
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Table C4. Robustness Checks: Alternative Functional Forms
(1) (2) (3)

Travel Costs -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000)

COIVD 0.193*** 0.193*** 0.189***
(0.010) (0.010) (0.010)

ln(Cumu. Cases) -0.002*** -0.002*** -0.002***
(0.000) (0.000) (0.000)

Lockdown Dummy 0.022*** 0.022*** 0.020***
(0.007) (0.007) (0.007)

Secchi Depth 0.010***
(0.002)

Secchi Depth X COVID -0.000
(0.001)

ln(Secchi Depth) 0.020***
(0.002)

ln(Secchi Depth) X COVID 0.001
(0.001)

Secchi Depth>2 m 0.021***
(0.003)

Secchi Depth>2 m X COVID 0.021***
(0.002)

Observations 2819946 2819946 2819946
N(BlockGroup) 155145 155145 155145
CBG FEs Yes Yes Yes
Site FEs Yes Yes Yes
Weather FEs Yes Yes Yes

Notes: Table C4 shows the results of running the recreation demand model
using water quality dummies or log form of water quality measures. All
specifications include site and CBG fixed effects, and weather controls. the
standard error is clustered at the CBG level. Robust standard errors are in
parentheses. ***,**,* denotes statistical significance at the 1%, 5%, and 10%
levels, respectively. For additional details, see Section 4.

58



Ta
bl
e
C
5.

Ro
bu

stn
es
sC

he
ck

s:
Pr
io
rC

on
ge

sti
on

Im
pa

cts
(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

Tr
av
el

Co
sts

-0
.00

4*
**

-0
.00

4*
**

-0
.00

4*
**

-0
.00

4*
**

-0
.00

4*
**

-0
.00

4*
**

(0
.00

0)
(0
.00

0)
(0
.00

0)
(0
.00

0)
(0
.00

0)
(0
.00

0)
Se

cc
hi

De
pt
h

0.0
12

***
0.0

12
***

0.0
10

***
0.0

09
***

0.0
14

***
0.0

14
***

(0
.00

2)
(0
.00

2)
(0
.00

2)
(0
.00

2)
(0
.00

2)
(0
.00

2)
CO

VI
D

0.0
56

***
0.0

57
***

0.0
73

***
0.0

72
***

0.0
73

***
0.0

74
***

(0
.01

1)
(0
.01

1)
(0
.01

1)
(0
.01

1)
(0
.01

1)
(0
.01

1)
Se

cc
hi

De
pt
h
X
CO

VI
D

0.0
02

**
0.0

02
**

0.0
02

**
0.0

02
**

0.0
00

-0
.00

0
(0
.00

1)
(0
.00

1)
(0
.00

1)
(0
.00

1)
(0
.00

1)
(0
.00

1)
ln
(C

um
u.

Ca
se
s)

0.0
03

***
0.0

03
***

0.0
03

***
0.0

03
***

0.0
03

***
0.0

03
***

(0
.00

0)
(0
.00

0)
(0
.00

0)
(0
.00

0)
(0
.00

0)
(0
.00

0)
Lo

ck
do

w
n
Du

m
m
y

0.0
60

***
0.0

60
***

0.0
44

***
0.0

44
***

0.0
46

***
0.0

46
***

(0
.00

8)
(0
.00

8)
(0
.00

8)
(0
.00

8)
(0
.00

8)
(0
.00

8)

Ob
se
rv
at
io
ns

21
22

13
1

21
22

13
1

21
22

13
1

21
22

13
1

21
22

13
1

21
22

13
1

N
(B

lo
ck

Gr
ou

p)
14

71
42

14
71

42
14

71
42

14
71

42
14

71
42

14
71

42
CB

G
FE

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Sit

eF
Es

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

W
ea
th
er

FE
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Pr
io
rC

on
ge

sti
on

La
gg

ed
Re

l-
at
ive

Vi
sit

s
La

gg
ed

Re
lat

iv
e

Vi
sit

or
s

La
gg

ed
Lo

g
of

Vi
sit

s
La

gg
ed

Lo
g

of
Vi
sit

or
s

La
gg

ed
Vi
s-

its
La

gg
ed

Vi
si-

to
rs

M
W

TP
3.0

31
3.0

92
2.6

61
2.4

18
3.5

22
3.5

46
N
ot
es
:
Ta

bl
eC

5s
ho

w
st

he
re
su

lts
of

ru
nn

in
g
th
er

ec
re
at
io
n
de

m
an

d
m
od

el
w
ith

pr
io
rc

on
ge

sti
on

co
nt
ro
ls

fro
m

20
19

to
20
21
.

La
gg

ed
re
lat

ive
vi
sit

sr
efe

rt
ot

he
ra
tio

of
th
en

um
be

ro
fv

isi
ts

at
as

ite
to

th
et

ot
al

nu
m
be

ro
fv

isi
ts

fro
m

aC
BG

in
th
ep

re
vi
ou

sy
ea
r.

Al
ls
pe

cifi
ca
tio

ns
in
clu

de
sit

ea
nd

CB
G

fix
ed

eff
ec
ts,

an
d
we

at
he

rc
on

tro
ls.

th
es

tan
da

rd
er
ro
ri
sc

lu
ste

re
d
at

th
eC

BG
lev

el.
Ro

bu
st

sta
nd

ar
d
er
ro
rs

ar
ei

np
ar
en

th
es
es
.*
**,

**,
*d

en
ot
es

sta
tis

tic
al

sig
ni
fic

an
ce

at
th
e1

%
,5

%
,a

nd
10

%
lev

els
,r
es
pe

cti
ve

ly.
Fo

ra
dd

iti
on

al
de

ta
ils

,s
ee

Se
cti

on
4.

59



Table C6. Robustness Checks: Alternative Market Size
(1) (2) (3) (4) (5)

Travel Costs -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000) (0.000) (0.000)

Secchi Depth 0.010*** 0.009*** 0.009*** 0.009*** 0.009***
(0.002) (0.002) (0.002) (0.002) (0.002)

COVID 0.193*** 0.191*** 0.190*** 0.191*** 0.190***
(0.010) (0.010) (0.010) (0.010) (0.010)

Secchi Depth X COVID -0.000 -0.000 -0.000 -0.000 -0.000
(0.001) (0.001) (0.001) (0.001) (0.001)

ln(Cumu. Cases) -0.002*** -0.002*** -0.002*** -0.002*** -0.002***
(0.000) (0.000) (0.000) (0.000) (0.000)

Lockdown Dummy 0.022*** 0.024*** 0.025*** 0.024*** 0.025***
(0.007) (0.007) (0.007) (0.007) (0.007)

Observations 2819946 2819946 2819946 2819946 2819946
N(BlockGroup) 155145 155145 155145 155145 155145
CBG FEs Yes Yes Yes Yes Yes
Site FEs Yes Yes Yes Yes Yes
Weather FEs Yes Yes Yes Yes Yes
Market Size 115 days 190 days 365 days 115 days

+ 190 days
for Univ.

115 days +
365 days
for Univ.

MWTP 2.572 2.467 2.408 2.467 2.408
Notes: Table C6 shows the recreation demand results using alternative market sizes. Column 1 calculates
the market size based on 115 days; column 2 calculates the market size based on 190 days; column 3
calculates the market size based on 365 days; column 4 calculates the market size based on 115 days
for general CBGs and 190 days for CBGs adjacent to Universities; column 4 calculates the market size
based on 115 days for general CBGs and 365 days for CBGs adjacent to Universities. The standard error is
clustered at CBG level. Robust standard errors are in parentheses. ***,**,* denotes statistical significance
at the 1%, 5%, and 10% levels, respectively. For additional details, see Section 4.
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Table C7. Robustness Checks: Alternative Site Area and Visits Cutoffs
(1) (2) (3) (4) (5)

Travel Costs -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
(0.000) (0.000) (0.000) (0.000) (0.000)

Secchi Depth 0.010*** 0.010*** 0.010*** 0.009*** 0.008***
(0.002) (0.002) (0.002) (0.002) (0.002)

COVID 0.187*** 0.193*** 0.194*** 0.197*** 0.197***
(0.009) (0.010) (0.010) (0.010) (0.010)

Secchi Depth X COVID 0.000 -0.000 -0.000 -0.000 0.000
(0.001) (0.001) (0.001) (0.001) (0.001)

ln(Cumu. Cases) -0.001*** -0.002*** -0.002*** -0.002*** -0.002***
(0.000) (0.000) (0.000) (0.000) (0.000)

Lockdown Dummy 0.022*** 0.021*** 0.022*** 0.020*** 0.024***
(0.007) (0.007) (0.007) (0.007) (0.007)

Observations 2928580 2837537 2819946 2764191 2713401
N(BlockGroup) 156647 155561 155145 154915 154024
CBG FEs Yes Yes Yes Yes Yes
Site FEs Yes Yes Yes Yes Yes
Weather FEs Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes
Area Size Lower Bound 1 Ha 1 Ha 2 Ha 2 Ha
Annual Visits Lower Bound 500 1000

Notes: Table C7 shows the recreation demand results using alternative cutoffs for site size and annual visits
lower bound. Column 1 does not have any restrictions; column 2 only includes recreation sites with a site
size above 1 Ha; column 3 only includes recreation sites in with a site size above 1 Ha and annual visits of
more than 500; column 4 only includes recreation sites with a site size above 2 Ha; column 3 only includes
recreation sites in with a site size above 2 Ha and annual visits of more than 1000. The standard error is
clustered at CBG level. Robust standard errors are in parentheses. ***,**,* denotes statistical significance at
the 1%, 5%, and 10% levels, respectively. For additional details, see Section 4.
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